Let $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ the set of values of $b$ for which $f(x)$ has greatest value at $x = 1$ is given by
$1 \le b \le 2$
$b = \{ 1,2\} $
$b \in ( - \infty , - 1)$
$\left[ { - \sqrt {130} , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\sqrt {130} } \right]$
Domain of $log\,log\,log\, ....(x)$ is
$ \leftarrow \,n\,\,times\, \to $
If $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ and $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;then $S :$
If for the function $f(x) = \frac{1}{4}{x^2} + bx + 10$ ; $f\left( {12 - x} \right) = f\left( x \right)\,\forall \,x\, \in \,R$ , then the value of $'b'$ is
If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$ $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x = \ -1$ is
Let $E = \{ 1,2,3,4\} $ and $F = \{ 1,2\} $.Then the number of onto functions from $E$ to $F$ is